			TUESDAY, JUNE 11
			10:00 AM - 11:30 AM
Poster Board Number	Abstract ID	Presenter	Title
			TRACK 1: MPS for (patho)physiology
1	71	Jingyi Zhu	SESSION: 1.1 MPS for cardiovascular diseases Unraveling Cardiac Device Infection: Tissue Engineered Blood Vessels as a Microphysiological Model
	/1	Jiligyi Zilu	Contractility-based pharmacological characterization of hiPSC-derived atrial and ventricular cardiomyocytes for preclinical
2	81	Bettina Lickiss	toxicity testing
3	104	Pimonrat Ketsawatsomkron	p-cresol compromises vascular barrier and induces endothelial cytotoxicity and inflammation in 3D human microvessel-on-a-chip
4	163	Alassia Marussi	SpheroFlow: a user-friendly Heart-on-Chip integrating hiPSC-derived cardiac 3D microtissues amenable for multi-parametric
<u>4</u> 5		Alessia Moruzzi Kevin Healy	non-invasive monitoring Vascular Microphysiological System as an Organ Preservation Testbed
6	570	Kevin Shani	Modeling Flecainide Response in Catecholaminergic Polymorphic Ventricular Tachycardia with Microphysiological Systems
7		Aaron Rogers	Biomanufacturing in Low Earth Orbit
8 9		Christopher J Hatch	3D vascular niche alters endothelial-stromal crosstalk to support vessel formation
9	002	Sabrina Staples	Transluminal endothelial bridge formation in a microfluidic vessel-on-chip: critical role of cytoskeletal tuning SESSION: 1.2 MPS for pulmonary diseases
			SESSION ILE IIII S ISI pullionally diseases
10	44	Yun-Chen Wu	A tape-assisted approach to fabricate membrane-containing devices for cultured cells performing breathing movements
11	67	Jeffrey Morgan	A 3D In Vitro Model of Fibrosis: Measuring the Pathophysiological Biomechanics of the ECM.
12 13	1	Thomas Shupe	Microengineered Human Organ Tissue Equivalents for the In Vitro Study of Drugs, Toxins and Infectious Diseases
14		Deborah Ramsey Satoshi Ikeo	Small airway lung-on-chip model for evaluating neutrophil-mediated damage in inflamed lung tissues. 'Portable' human iPSC-derived alveolar organoids mimicking physiological functions in microfluidic system
	132	Jacosiii ikeo	rotable numan is 30-ventred alveolar organicus minicking physiological functions in microniduc system
15	231	Marize Valadares	Lung-sens-on-a-chip model for evaluation of respiratory sensitizers aerosols: characterization and applicability.
16	240	Lea De Maddalena	A novel alveolus-on-chip model of SARS-CoV-2 infection for pre-clinical application
17	245	Young-Jae Cho	Integrated adult tissue-derived lung organoid-microphysiological system for new emerging infectious respiratory diseases
18	322	McLendon Patrick	Alveolus-on-a-Chip As a Model Platform for Assessing Toxicity after Exposure to Flight-related Compounds via Custom Soot/VOC Generation
19	442	Konrad Schmidt	A breathable multi-compartment lung-on-chip model to study the (patho)physiological relevance of biological hydrogels in dynamic conditions
20	510	Janny Pineiro-Llanes	Assessment of Drug Permeability across Healthy and Pathological Bronchial Epithelial: In vitro Organotypic systems vs. Immortalized cell line
21	546	Madeline Eiken	Synthetic hydrogels to interrogate extracellular matrix deposition by alveolar organoids
22	661	Yuncheng Man	Macrophage-exacerbated alveolar tissue injury and therapeutic pyroptosis blockade in influenza infection revealed in a humal lung alveolus chip
		l., .,	SESSION: 1.3 MPS for cancer research
23	8	Yaling Liu	Vessel-supported Tumor Model on Chip for Therapeutic Evaluation
24	29	Pedro Pinto	Microfluidic Prostate-Cancer Model to Study MicroRNA Secretions and Their Potential as Diagnostic Biomarkers
25	40	Pooja Sawant	Alternative-to-animal lung adenocarcinoma model: Characterization, validation, and therapeutic insights using a spheroid model
26	47	Olivier UWISHEMA	Revolutionizing Neurotherapeutics: Blood-Brain Barrier-On-A-Chip Technologies For Precise Drug Delivery
27	55	Sirjana Pun	A Two-Step Approach to Biofabricating an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Human Glioblastoma
28	57	Rachel Perez	Combining patient-derived tumor organoids and an organ-on-chip system to model colorectal cancer progression
29	60	Hannah Graf	A standardized plug&play multi-organ chip connection to study interactions between tumor and lymphoid tissue
30		Keqian Nan	Development of an ex vivo Image-Based Platform for Kidney Precision Immuno-Oncology
31	95	Thomas Richardson	Development of hydrogels supporting liver immune-microtumors for functional precision medicine
32	96	Curran Shah	combined influence of kras mutational status and peristaltic-like forces promotes tumor cell intravasation in organ on chip model of colorectal cancer
33	123	Maryna Somova	Unveiling Molecular Dynamics of SARS-CoV-2 Spike Protein in the Renal epithelium using a Microphysiological approach (MPS
34	1	Julia Alber	Real time imaging of treatment response in an immunocompetent tumor-on-chip
35		Mariana Viso	Engineering Immune-driven Stromal Remodeling in Pancreatic Cancer within a PDMS-free MPS
36	149	Sriram Bharath Gugulothu	Perfusable 3D Bioprinted tumor model for triple-negative breast cancer immunotherapeutics screening
37	175	Gemma Nomdedeu-Sancho	Development of Skin Organoids as a Universal Platform for Skin Physiology, Injury, and Disease Modeling
38	184	Yu-Hsiang Hsu	Development of a vascular liver tumor model using a micro-dissected patient-derived tumor xenograft and a physiologically controlled MPS system

Poster			
Board Number	Abstract ID	Presenter	Title
Number	110	resenter	SESSION: 1.3 MPS for cancer research
39	199	Jose Antonio Reales-Calderon	Vascularization of Tumor Spheroids in the organiX System for Immuno-oncology Applications
40		Giulia Amos	Towards a 3D hydrogel platform to study glioblastoma invasion in vitro
41	209	Viwe Fokazi	Establishing a doxorubicin-resistant triple-negative breast cancer spheroid model
42	210	Atsuya Kitada	Parallel cultivation and evaluation of multiple vascularized tumor spheroids using a microfluidic device
			Assessment of immune cell infiltration and cancer metastatic potential in Akura™ Immune Flow Chip - a microfluidic 3D
43	228	Lisa Hoelting	spheroid system
44	230	Thomas Sommermann	A microfluidic spheroid-on-a-chip model of vascularized pancreatic cancer for screening novel therapeutics
45	237	Simon Sayer	An artificial immune niche and an in vitro tumor model enabled by high-resolution 3D printing
46		Kimia Abedi	A Bioprintable Model of Glioblastoma for Dissecting Cellular Mechanisms of Tumor Invasion and Drug Resistance
47	292	Adeel Ahmed	A Patient-Specific, Organotypic Head and Neck Cancer Model For Personalized Medicine
48	200	Angelo Massaro	Development of an In Vitro Colon Crypt Model to Study the Interdependent Relationship of Underlying Fibroblasts and Intestinal Epithelial Cells
40	236	Aligeio Massaro	Testing of Patient-Derived Stem Cell Extracellular Vesicles Loaded with Cisplatin in a Personalized Lung-Cancer On-Chip
49	300	Arturs Abols	Platform
50		Shay Soker	Assessing the Effects of BAPN and Marimastat on Collagen Remodeling in an Ex-Vivo Tumor Organoid Model
		,	Exploring the effects of fluid velocity and shear stress on the metastatic potential of circulating tumor cells in engineered
51	372	Marie Floryan	organ-specific environments.
52	378	Jerome Lacombe	ASTEROIDS- spheroid on chip to reproduce the lung tumor microenvironment
53		Zhipeng Dong	Microfluidic blood-brain barrier chip for identifying repurposable drugs as glioblastoma chemotherapeutic agents.
54	438	Haru Yamamoto	Single-cell analysis reveals characteristics of feline mammary tumor organoid derived from patients
			Development of a 3D biomimetic microenvironment with engineered cell-matrix interactions to investigate in vitro
55	463	Sadegh Ghorbani	glioblastoma cell behaviors
56	514	Stephanie J Hachey	Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model
- 30	314	Stephanie 3 Hachey	talgeting tarrior stromatime rectains in triple negative sheast cancer using a number vascularized micro turnor model
57	532	Martin Stano	Advanced Microfluidic Platform for In-Vitro Sonodynamic Therapy Testing in Diffuse Midline Glioma Cell Models
58	543	Rajul Bains	Vascularized tumor-on-a-chip to investigate immunosuppression of CAR T-lymphocytes
			Microphysiological systems for investigating potential anti-angiogenic effects of xenohormetic phytochemicals in the context
59	567	G. Wills Kpeli	of cancer
			Prostate-specific membrane antigen's role in promoting and protecting tumor-neovasculature during hypoxia-induced
60		Ngan Phung	angiogenesis
61		Emily Hutchison	A Microphysiological System to Model Chronic Hepatitis C Virus Infection and Hepatocellular Carcinoma
62		HONGYAN YUAN	A Contraction–Reaction–Diffusion Model: Integrating Biomechanics and Biochemistry in Cell Migration
63	633	Simona Campora	Primary breast tumor spheroids as a model for evaluating the impact of collagen matrix on drug penetration
64	665	Lisa F Horowitz	Microscale cancer models based on microdissected tumor "cuboids" that retain a complex tumor microenvironment
65		Tran Ngoc Huyen Nguyen	Microfluidic Modulation of Tumor Microvasculature in Micro-dissected Cancer Tissues
		111111111111111111111111111111111111111	SESSION: 1.4 MPS for rare diseases
			A human Bone/Bone-Marrow-on-a-Chip system for preclinical investigation of new therapeutic approaches for Autosomal
66	159	Nina Stelzer	Recessive Osteopetrosis
67	213	Ilka Maschmeyer	Chronic Kidney Disease on-a-chip – a dual-perfused autologous proximal tubule model
			Establishing a Vascularized and Perfusable in vitro Skin Model Using hiPSC-Derived Organoids for Disease and Infection
68		Amelie Reigl	Research
69		Jennifer Harder	Modeling podocytopathies using human kidney organoids
70		Xiufang Guo	Development of human iPSC-skeletal muscle ALS model for pathogenesis study and therapeutic testing
71		Kenneth Hawkins	Human iPSC-CMT2s Motoneuron Model for Characterization and Drug Development
72	650	Jan Lichtenberg	Scalable 3D cell culture-based retinal fibrosis model for efficacy testing
262	427	Vuki Kahayashi	Development of a simultaneous evaluation system for anticancer drug sensitivity and side effects using microphysiological
362	437	Yuki Kobayashi	systems and 3D organoid culture method Establishment of an anti-space days constituity assessment system using misraphysiological systems and foliop broast capear
363	445	Honoka Hashizume	Establishment of an anti-cancer drug sensitivity assessment system using microphysiological systems and feline breast cancer organoids
	1 443	I TOTTORU HUSHIZUITIE	o Barrolas

			TUESDAY, JUNE 11
			4:30 PM - 6:00 PM
Poster			
Board	Abstract		
Number	ID	Presenter	Title
		CECCIO	TRACK 1: MPS for (patho)physiology
73	1	Sun Min Kim	N: 1.5 MPS to model pre- and postnatal conditions or reproductive disorders Investigating oxygen-stressed placental vessel remodeling on a microfluidic 3D platform
/3	- 4	Juli Willi Killi	Microphysiological model of the placental barrier to study human Brucella infections and antibiotic treatment during
74	87	Odysseas Chaliotis	pregnancy
75	295	Samantha Holt	Development of an MPS model of innervated human endometriosis and adenomyosis lesions
76	343	Linda Griffith	Engineering synthetic hydrogels for a microfluidic model of vascularized endometriosis lesions
77	365	Shuo Xiao	An ex vivo mini-ovary model to study female reproductive biology, medicine, and toxicology
78	614	Ana Collins-Smith	Microfluidic Device Successfully Replaces Traditional Models of Pregnancy Associated Drug Pharmacokinetic Studies
79	617	Mi T. M. Soe	An ex vivo model for investigating the mechanisms of ovarian disorders induced by polycystic ovary syndrome (PCOS)
75	017		ESSION: 1.6 MPS to model neurodevelopment and neurodegeneration
			Modelling the embryo using stem cells: defining the roles of biochemical and physical cues in driving stem cell self-
80	24	Mubeen Goolam	organisation.
			The multiplatform utility of human iPSC derived neuronal models to provide complex biological systems for drug discovery
81	80	Stuart Prime	using Microphysiological systems
02	00	Vulcari Chigometa Mas:	Study about the cell composition of blood brain barrier-microphysiological system (BBB-MPS) for reproducing pathological
82 83		Yukari Shigemoto-Mogami	conditions A human hiPSC brain fatigue model and in vivo validation of a neuroactive peptide secreting synbiotic
84	1	Krysten Jones Hong Nam Kim	Neurovascular unit model for modeling human brain diseases
85	1	Benoît G. C. MAISONNEUVE	Translational brain-on-chip models for Alzheimer's disease drug discovery.
86	+	Patrick C Hurley	Development of MS-on-a-chip; effects of microfluidic device structure.
87	1	Sourabh Sharma	A fetal blood-brain-barrier microphysiological system to study the effect of in-utero toxicant exposure
88	157	Eric Reed	Impact of Dynamic Oxygen Conditions on a Human Neurovascular Unit-on-a-Chip
89	167	Emma Drabbe	Higher Throughput Bioreactor for Retinal Organoid Microenvironmental Control
			The Investigation of Drug-Induced Dementia in an hiPSC-Central Nervous System Assessing Deficits in Long-Term Potentiation
90		Kaveena Autar	from Anticholinergic Burden
91		Florian Larramendy	Compartimentalized MEA Pain(s)-on-chip platform
92	+	Mahdi Ghazal	Next-generation electrophysiology for functional characterization of human neural organoids
95	338	Maria Grisales	Development of a Human-Based Cortical Neuron Model for Down Syndrome
94	349	Francesca Michela Pramotton	Senescent microphysiological model to investigate vascular and lymphatic dysfunction in neurodegenerative diseases
95	353	Maren Schenke	Sex hormone supplementation increases physiological relevance of an in vitro model of the developing human brain
			A Functional In Vitro 3D iPSC-Derived Neuromuscular Junction Model for use in Neurotoxin Potency Testing or Preclinical Drug
96	1	Nicholas Geisse	Development
97		Tatsuya Osaki	Engineering 3D endothelial vascular networks from Rett syndrome patient-derived iPS cells
98	468	Zhanhe Liu	High Precision and High Throughput Neuronal Circuits Printing for Organ-on-A-Chip Devices
99	499	Alex Rittenhouse	Addressing the role of maternal inflammation in Autism Spectrum Disorder using immune-competent brain microphysiologic systems
100		Lise Harbom	Modulation of glial differentiation in a 3D iPSC-derived CNS model
101	521	Gülden Akçay	Femtoprinted Brain-on-Chip to Explore Brain Microenvironment
102	522	Ikuro Suzuki	A novel field potential imaging method to evaluate systemic neuronal function using a compartmentalized in vitro MPS device
400			Generation of Human Endothelial Cells for Integration of Pericytes and Regional Specific Astrocytes to Mimic in vitro Blood
103	539	Jennifer Lawson	Brain Barrier Model from Human Induced Pluripotent Stem Cells
104	542	Alexandra Maertens	Circadian rhythm gene networks in neurobiology and neurodegenerative diseases: comparing in vitro cell lines, organoids, and in vivo data using weighted gene correlation network analysis
105		Itzy E. Morales Pantoja	Enhancing brain organoid size and complexity using 3D printed microfluidics
	334	,	Choroid plexus-on-a-chip: a microfluidic model to study how cerebrospinal fluid secretion and blood-cerebrospinal fluid
106	568	Prashant Hariharan	barrier function are affected by hydrocephalus-associated inflammation.
107	1	Vincent Truong	Completing The Circuit: Recreating Sensory Pathways Using Human Keratinocytes, Sensory Neurons, and Dorsal Horn Neurons
108	615	Spencer Seiler	A feedback-driven IoT microfluidic, electrophysiology, and imaging platform for brain organoid studies
109	610	Emma Warrner	A Novel Microfluidic Chip to Induce Linear Concentration Gradients for Differentiation of Cochlear Cells of Inner Ear Organoids
103	619	Limina vvarrilei	A Novel which officials cally to induce linear concentration draulents for Differentiation of Cochiedr Cells of Hiller Edf Organolos
110	625	Peter Udall	Development and characterization of human iPSC-derived 3D neurospheres for disease modelling and drug discovery
	,		

Poster			
Board	Abstract		
Number	ID	Presenter	Title
			SESSION: 1.7 MPS for metabolic and endocrine disorders
111	226	Ciulia Baggi	A payal human 2D payistaltic simulating Cut on Chin platform for prodictive testing of pay barrier protecting drug candidates
111	230	Giulia Raggi	A novel human 3D peristaltic simulating Gut-on-Chip platform for predictive testing of new barrier-protecting drug candidates ESTEATO-CHIP: A NEW MODEL FOR INVESTIGATING NON-ALCOHOLIC FATTY LIVER DISEASE THROUGH THE INTEGRATION OF
112	323	Ana Carolina Figueira	3D CULTURES OF ADIPOCYTES AND HEPATIC CELLS
113		Trivia Frazier	ObaCell® Obesity-on-a-Chip, a Platform for Disease Modeling and Drug Development - A GLP1 agonist study
114	406	Erin Tevonian	Engineering a vascularized liver spheroid model of hepatic insulin resistance
115	413	Sakai Yasuyuki	A liver microphysiological system with an open organoid structure for liver disease modeling.
			Modeling Metabolic Dysfunction-Associated Steatohepatitis in human liver Microphysiogical Systems for clinical prediction of
116	634	Rachelle Baun	therapeutic efficacy.
117	644	114 - 14/2161 -	Mandulation of the intervals the transfer of the intervals of the interval
117	641	Ute Wölfle	Modulation of the interplay between fatty liver spheroids and psoriasis keratinocytes by liver- protecting herbal remedies Digital pathology with artificial intelligence analysis provides insight to the efficacy of antifibrotic compounds in human 3D
118	643	Susan Grepper	MASH model
			Unveiling Bone Remodeling Dynamics: exploring osteoblast-osteoclast interactions in an organ-on-chip model via biomimetic
119	652	Francisco Conceição	bone-remodeling micro-units
			SESSION: 1.8 MPS for immune response and diseases
120	5	Trinath Jamma	Study the impact of host gut microbiota-derived secondary bile acids on intestinal inflammation
121	18	Dawn Lin	High-throughput organ-specific micro-vessel model for vascular research
122	22	Time Mardan	DCC induced colisions of this model to study the thousand to naturally of the consequence in a sid little shall a sidily vitus
122 123		Tim Kaden Kylie Gallagher	DSS-induced colitis-on-chip model to study the therapeutic potential of the secondary bile acid lithocholic acidin vitro Creation of colon epithelium-immune microphysiological systems on porous scaffolds
123	51	Nylle Gallagilei	Recapitulation of the pathophysiology of inflammatory bowel disease using colon organoids differentiated from human
124	43	Fuki Yokoi	pluripotent stem cells
125	59	Joel P Joseph	T cell activation in 3D bioprinted hydrogels mimicking biomechanical properties of lymph node microenvironment
126		Moritz Pfeiffenberger	Development of a cartridge bioreactor for parallelized cultivation and stimulation of a complex fracture healing model
127	91	Huddleston Mary Elizabeth	Evaluation of a Pathogen-Killing Synbiotic in a Human Intestine-on-a-Chip
128	100	Ryuji Yokokawa	hiPSC-derived human airway and alveolus on-chip models: Decoding dynamic immune responses to SARS-CoV-2 in human lungs
120	103	nyuji Tokokawa	luligs
129	116	Kayenat Aryeh	Comparative analysis of the calcineurin inhibitors cyclosporine and voclosporin on primary human kidney epithelial cells
130	122	Kevin Bewley	Adding cellular immune elements into a lung SARS-CoV-2 infection MPS model system
131	143	Alexandra Damerau	Dual-chambered bioreactor for biomimetic culture of human joint components
132		Naomi Coombes	SARS-CoV-2 infection in upper and lower human respiratory MPS at high containment as a model for pandemic pathogens
133		Kevin J. Pollard	Microphysiological Peripheral Nerve Invasion by Respiratory Viruses
134		Noo Li Jeon	Inflammatory Gut-on-a-Chip for Testing Live Biotherapeutics Product for Inflammatory Bowel Disease
135		Jenna Kastenschmidt	Modeling disease and testing therapeutic response using human immune organoids
136		Sarah Heub	Automated continuous unidirectional perfusion of vascularized 3D in vitro models.
137	247	Bhumi Suthar	Engineering a human endothelialized platform for disease modeling A microphysiological system reveals neutrophil contact-dependent attenuation of pancreatic tumor progression by CXCR2
138	252	Shuai Shao	inhibition-based immunotherapy
			··
139	254	Elena Müller	Novel microfluidic staining chip for suspension and adherent cell cultures requiring minimized cellular and reagent resources
140	293	Crystal Burke	Modeling emerging respiratory virus infection utilizing a lung microphysiological system
141	351	Hosein Mirazi	Modeling Human Joint Health and Disease: A Four-Cell Co-culture Chip Approach Under Varied Fluid Shear Stress
142	350	Isahollo Linaros	Davidoning a Human Tondon on a Chin with Vaccular Flourto Model Inflormation. Machanisms in Fibratic Tondon Settledon
142	358	Isabelle Linares	Developing a Human Tendon-on-a-Chip with Vascular Flow to Model Inflammatory Mechanisms in Fibrotic Tendon Pathology IPS-based pathophysiologically-relevant human liver co-culture microfluidic model for the study of its interactions with
143	366	Robin Houssier	parasitic Schistosoma mansoni eggs
144		Samantha Holt	An in vitro model of the skin microvasculature to investigate host response to borrelia infection
145		Yunhao Zhai	Modeling intramuscular vaccination with mRNA vaccines in a lymphoid follicle organ chip
			Utilization and Development of in vitroµSiM Platforms to Study Bacterial Invasion of the Osteocyte Lacuno-Canalicular
146	408	Arvind R. Srivatsava	Network
147	492	Vidhya Vijayakumar	A multi-strain human skin microbiome model provides a testbed for disease modeling
148	516	Evan Cirves	3D In Vitro Modeling of Extramedullary Granulopoiesis in Wound Healing
			Stomach-on-chip co-culture model reveals increased recruitment of dendritic cells to the gastric epithelium upon H. pylori-
149	529	James N. Wilking	induced apoptosis
150	F07	Maria Duhau	iPSC-derived immunocompetent skin models as an alternative method for the in vitro identification of skin-sensitizing foreign
150	597	Marla Dubau	substances

Tue, June 11 - 430PM-6PM

Poster			
Board	Abstract		
Number	ID	Presenter	Title
SESSION: 1.8 MPS for immune response and diseases			
			Establishment of Microphysiological Jejunum Platform in Emulate Organ-Chip System to be Used in Cultivation of Viruses and
151	612	Hediye Cinar	Parasites