WEDNESDAY, JUNE 12					
10:00 AM - 11:30 AM					
Poster Board Number	Abstract ID	Presenter	Title		
			TRACK 2: Modeling, fabrication and manufacturing of MPS		
			SESSION: 2.1 MPS to model physiological barriers		
			A simple method for mimicking the in vivo oxygen concentration in cell culture insert-type MPS during co-cultivation of		
152	12	Yoshihiro Umehara	anaerobic/microaerobic microbes		
			Development of a shear stress loading culture system for vascular endothelial cells using a pressure-driven microphysiological		
153	14	Shinji 杉浦	systems		
154	23		Suspended hydrogel culture as a method to scale up intestinal organoids		
155	50	Lydia Baldwin	Modular Microfiuldics for Modelling Disease; iterative improvement, ease of use & reliability		
130	52				
157	66	Natalia Andrea Moreno Sierra	Bioengineering human pluripotent stem cell-derived skeletal muscle-on-chips for disease modelling and drug discovery.		
			Indispensable roles of the scaffold materials in humanized three dimensional (3D) blood brain barrier (BBB) network		
158	75	Kaoru Sato	microphysiological system (MPS), "BBB-NET"		
			Construction of the human iPS cell-derived multilayered small intestine model by reproducing interstitial flow on the		
159	79	Sayaka Deguchi	microfluidic device		
160	92	Holly Bachas Brook	Development of a functional 3D eccrine sweat gland model		
161	97	Katherine Boylin	Advancing Human Intestinal Organoid Culture: Overcoming Limitations through Suspension Bioreactor Systems		
162	11/	Pai-Wen Wang	Modeling ischemic strokein vitro via photogeneration thrombosis on a chip		
163	152	Brvan Schellherg	sensing		
164	152	Verena Vogel	A macro lab-on-desk system addressing pharmacokinetics – a possibility for a proof of concept before miniaturization		
165	170	Priscilla Lee	Modeling the lymphatic vessel using microfluidic technology to study immune response in vitro		
166	172	Alexa Rabeling	Investigating neural tube development using anin vitrostem cell-based model		
167	225	Wenxin Cao	Development of an Artificial Mucus Barrier for the in vitroStudy of Host-Microbe Interaction in Small Intestine		
168	235	Mariana Costa	Bioengineered gut perfusable organoids with in vivo-like complexity and function for precision medicine applications		
			Towards enhanced organs-on-chips: two-photon laser patterning of microvascular structures for physiological and		
169	239	Alice Salvadori	inflammatory in vitro models		
170	251	Louis Widom	Pericytes contribute basement membrane proteins in a human stem cell-derived blood-brain barrier model		
171	250		Microfabrication of an Open-Top Platform Recapitulating 3D Architecture of Vascularized Epithelial Tissues via Synergistic Use		
171	258	Wisarut Kiratitanaporn	OF Stereonthography and Bioprinting		
172	302	Sami Farajonam	A charsendotrienal electrical resistance (TECK) module for measuring vascular barrier resistance in 5D hydrogers		
173	373	Katherine Daniel	skin model		
174	376	Serah Kang	Human blood-brain-barrier spheroids as an in vitro model of delivery to the brain		
175	392	Yasuyuki Sakai	Oxygen-permeable advancements in liver organoid microphysiology: a novel co-culture approach with hIPSC-derived cells		
176	420	Jun-Ha Hwang	3D Microphysiological System for Reconstitution of Human Blood-Brain-Barrier Function		
177	422	Sohyeon Jeong	Vascularized Organoids-on-a-Chip for Drug Screening		
178	424	YongTae Kim	ProMEPS: a Paradigm Change in Automated Microphysiological System Modeling		
1/9	449	Dr. Jennifer Sun	Next-generation Perfusable Organ-chip Platforms for Drug Discovery and Cosmetic Testing		
180	469	Joseph Clurca	Applications of translational QSP modeling for the interpretation of Human-on-a-chip systems		
182	470	Annika Winter	Towards Immunity on Chin - Immune Cell Perfusion of an IPSC-derived Interactions		
183	487	leremy Newton	Tunable In Situ Synthesis of Ultra-thin Extracellular Matrix-Derived Membranes		
184	540	Mandy B. Esch	Pumpless microfluidic valve creating multiple physiological flow patterns		
185	561	Brian Johnson	Microplate micromachining for microphysiological model fabrication		
			Unraveling the role of three-dimensional curvature on renal epithelial cell function in a proximal tubule microphysiological		
186	574	Andres Armenta	system		
SESSION: 2.2 MPS for ADME modeling					
187	62	Chikara Miyake	Development and Application of a Fully Automated Culture System for Pressure-Driven Microphysiological Systems		
188	76	Makoto Yamanaka	Development of a liver chip that can evaluate biliary excretion of pharmaceuticals using hepatocytes		
189	112	Hiroko Toyoda	Gut and liver-on-plate: evaluation of a cell culture system emulating the first-pass effect		
190	301		Uptimization of stem cell derived kidney organold differentiation for application in the HUMIMIC Chip4		
107	382	Christopher Arian	Litilizing Enteroid Monolavers Towards the Prediction of Natural Product-Drug Interactions		
192	391		Closing the Translational Gap in Drug Development: Humanized Multi-Tissue Chin for Enhanced Pharmacokinetic and		
193	412	Shiny Amala Priya Rajan	Toxicological Profiling		
194	552	Ze Zhong Wang	A hyaluronic acid-based hydrogel culture platform for iPSC-derived midbrain neuronal culture		

Wed, June 12 - 10AM-1130AM

Poster	A h - + +					
Number	Abstract ID	Presenter	Title			
SESSION: 2.2 MPS for ADME modeling						
195	636	Gretchen Mahler	A mammary epithelium on a chip for predicting lofexidine secretion into breast milk			
			SESSION: 2.3 Sensors in MPS			
196	70	Yuji Nashimoto	Integrating a screen-printed electrochemical sensor with a microfluidic device toward real-time monitoring of lactate changes			
197	93	Srikanya Kundu	3D bioprinted functional neural circuitry models for drug screening			
198	100	Seunggyu Jeon	Biosensor-Integrated Multi-Organ-on-a-Chip Platform for Real-Time Monitoring of Organoid Function			
199	107	Kimiharu Oba	A barrier-on-chip with electrochemical impedance spectroscopy and electrochemiluminescence imaging			
200	110	Yoshinobu Utagawa	Cell culture devices with porous membrane electrodes for in-situ electrochemical cell analysis			
			High-Throughput, Miniaturized Rapid- Response Aptamer-Based Sensor Platform for Real-Time Monitoring of Amino Acids and			
201	113	Alastair Stewart	pH in Cell Culture Systems			
			Development of a bilayered microfluidic chip with transepithelial electrical resistance (TEER) measurement function for drug			
202	115	Tomomi Kaneko-Goto	assay			
203	187	Virgilio Valente	Integrated Planar Patch Clamp/Microelectrode Array System for Single-Cell Electrophysiology			
204	190	Yoshikazu HIRAI	Topology-Optimized Electrode Design for Accurate TEER Measurements in Microfluidic Organ-on-a-Chip Devices			
205	211	Manuel Carrasco Yagüe	Monitoring Cellular Spatiotemporal Dynamics through Machine Learning-Enhanced Multi-Electrode Impedance Spectroscopy			
206	212	Hendrik Erfurth	Oxygen saturation measurement in photolithographically produced blood vessels in a multi-organ chip			
207	226	Albert van Breemen	Cost-Effective Manufacturing of Microphysiological Systems			
208	309	Angela Murchison	Miniaturized iPSC-derived AD/ADRD Microphysiological Systems Platforms for High-Throughput Drug Screening			
209	314	Zohreh Izadifar	A multifunctional sensor integrated Organ Chip for continuous monitoring of physiological tissues metabolic functions			
210	319	Roberts Rimsa	Improved TEER measurement consistency with external electrodes in PDMS-free organ on chips			
			A multiparametric electrochemical sensor chip for real-time monitoring of metabolic dysfunction in a neurovascular chip			
211	335	John Cognetti	model			
212	347	Zhanping Ren	Automated Fabrication and Large-Scale Integration of Human Muscle Tissue Chips with Magnetic Force Sensor Array			
213	377	Soo Jin Choi	Organoid-conforming microelectrode arrays for recording cardiac electrophysiology across 3D surfaces			
214	383	Byunggik Kim	Self-adapting stretchable electronics for long-term electrophysiological mapping of human cardiac organoids			
215	441	Konstanze Brandauer	Advancing In Situ Monitoring to Validate Intestinal Barrier Integrity: A Microphysiological Approach			

WEDNESDAY, JUNE 12						
4:30 PM - 6:00 PM						
Poster						
Board	Abstract					
Number	ID	Presenter	Title			
			TRACK 2: Modeling, fabrication and manufacturing of MPS			
		SESSI	ON: 2.4 Bioconvergence: Artificial Intelligence, Machine Learning, and MPS			
216	125	Emanuel Behling	Raman microspectroscopy discriminates different bacteria species in a three-dimensional airway mucosa on a chip model			
217	169	lan Jan	Devising Novel Microarray-based Platform to Screen and Sort Gastruloids			
218	346	Dharaminder Singh	Developed the model, built the assay, now a focus on throughput! The Liver-48, an MPS designed for industry adoption.			
219	482	Samuel Coeyman	Tracking Remodeling and Mechanics in Engineered Heart Tissues In Vitro Using Machine Learning-Based Image Processing			
220	613	Wei Tian	Exploring Heart Development via Artificial Intelligence-Integrated Single-Cell Multi-Omics Data Analysis			
			SESSION: 2.5 MPS for infectious diseases and vaccine development			
221	177	losie McAuliffe	Assessing Inhibition of Cytomegalovirus Infection by Neutralizing Antibodies in a Human Placenta Microphysiological Model			
222	215	Keniiro Muta	Visual and quantitative validation of dengue virus infection in a liver organ-on-a-chip			
223	261	Emily Jones	Development of a triple-organ-chip microphysiological system for human disease modelling.			
224	269	Ashley Zani	Characterization of RNA lipid nanoparticles (LNPs) in 3D bioprinted human skeletal muscle tissue			
			Evaluating the effects of amniotic fluid motion on the amnion membrane using an amnion membrane (AM) organ-on-chip			
225	279	Sungjin Kim	(OOC)			
226	352	Catalina Gaviria	3D human skin equivalents for viral infection with skin-tropic viruses			
227	400	Adya Panchal	Efficient and Scalable Microfabrication of Blood Vessel-Chip Using Stereolithography 3D Printing			
228	419	Djuro Raskovic	Optimizing fluorescent labeling of primary CD4+ T cells for measuring lymphocyte motility			
229	628	Qinghua Wu	SARS-CoV-2 pathogenesis in angiotensin II induced heart-on-a-chip disease model and extracellular vesicle screening			
230	645	Charles Shoemaker	Development of Human Microphysiological Models for the Evaluation of Viral Pathogenesis Biomarkers			
221	22	Mitsumasa Tagushi	SESSION: 2.6 MPS for organ crossfalk (3+ organs)			
231	210	Gilles Weder	Advancing microphysiological system in ough quantum beam technology			
232	559	Ishan Goswami	Development of a hiPSC-derived type 2 diabetes mellitus microphysiological system			
	555		SESSION: 2.7 Modeling diversity with MPS			
234	356	Cecilia Gonzalez Sanchez	Human-Derived Biomaterials to Fully Support Microphysiological Systems			
			SESSION: 2.8 MPS to model metabolism and transport			
			Improvement of culture method of human induced pluripotent stem cell-derived intestinal epithelial cells and their application			
235	176	Tamihide Matsunaga	to a gut and liver-on-plate			
226	170	Deiles Oraulti Nemeralti	Characterization of the primary intestinal cells or human iPS cell-derived small intestinal epithelial-like cells on non-PDMS			
230	1/9	Misuki Kitamura	Cutechrome PAEQ induction study on a gut and liver on plate			
237	202	Anne-Katrin Bothe	A microphysiological liver-on-chip model for antibody validation in consideration of the EcRn recycling pathway			
239	250	Shiori Tamura	Co-culture system of bacteria and intestinal epithelial tissue with both anaerobic and aerobic conditions			
240	324	Priyatanu Roy	Inducing perfusable microvasculature in the commercial PhysioMimix platform			
241	384	Moo-Yeal Lee	Reproducible generation of human liver organoids (HLOs) on a pillar plate platform via microarray 3D bioprinting			
242	456	Go Sugahara	Establishment of a Stepwise In Vitro Culture System for Sustained Fate and Functional Maintenance of Human Hepatocytes			
			Multiplexed Microplate-based Physiological Emulation with Superfusion, Mechanical Stimulation, and Metabolite			
243	477	Xumei Gao	Measurement			
244	624	Viesturs Sints	Non-Newtonian flow in Organ-on-a-Chip Systems			
245	640	Takuya Okazaki	TRACK 3: MDS Validation qualification meet regulatory requirements			
		SESSION: 3.1 On the w	av to gualification and validation: MPS for a defined context of use and applicability domain			
246	17	Logan Porter	The validation of Perfused Organ Panel MPS with synthetic hemoglobin, Blood Substitute, for drug-induced liver injury			
247	41	Huiting Zhang	A rapid and noninvasive approach for vascular quantification of 3D blood-brain barrier model			
248	86	Michelle Ma	Developing robust & long-term viable complex in vitro model for modeling hepatocellular diseases			
		-	Defining validation criteria for a primary jejunum and primary hepatocyte dual-organ MPS: a promising tool for more			
249	151		predictive studies of numan drug ADIVIE and oral bloavallability			
250	185		Assessing the distribution of dietary fatty actus and sugars into Emulate S-1 organ-Chips.			
251	191	I ANU SALUII	ווים במאש הביאיפרו ומטטרמנטרץ ארטנטנאאבש מות ווותמצורומו ארטמענגש ופצמו מווא זאירש מפעונפש אש פעוואדווו.			
252	218	Stéphanie Boder-Pasche	MicroHisto: automated high-throughput microhistology workflow relying on coplanar hydrogel embedding of 3D cell models			
253	316	Yousif Abuhamad	Characterization of the long-term toxic response of proximal tubule epithelial cells in a microphysiological system			
			Accelerating cell-based high-throughput screening with a novel standardized 96-wells fluidic system with interchangeable cell			
254	334	Vania Silverio	culture			

Wed, June 12 - 430PM-6PM

Poster	A						
Number	Abstract ID	Presenter	Title				
	SESSION: 3.1 On the way to qualification and validation: MPS for a defined context of use and applicability domain						
			Advancing Microphysiological Systems through Qualification: RepliGut® Model applications in Pharmacology and Toxicology				
255	342	Bryan McQueen	Screening				
256	434	Yiguang Zhu	Advancing Validation Methodologies and Regulatory Acceptance of Microphysiological Systems				
257	461	Haley L. Moyer	Comparative Analysis of Caco-2 Cells and Human Enteroids (Jejunal or Duodenal) in Gel- and Membrane-Based Barrier Models of Intestinal Permeability				
258	464	Courtney Sakolish	Onboarding and Testing of Microphysiological Systems: Experience of the TEX-VAL Consortium				
259	466	Unho Jin	Testing of Reproducibility and Functionality of the Blood-Brain Barrier Microphysiological System: Comparative Analysis of Sources of Human Blood Microvascular Endothelial Cells Cultured with or without Neuronal Cells in Static and Fluidic Conditions				
260	500	Alexandra S. Lysinger	Standardization of hiPSC derived brain MPS cytoarchitecture				
261	544	Sumin Lee	Dynamic live cell imaging in microfluidic chips using low-coherence holotomography				
262	587	Emma Arnesdotter	The European approach to the development of Next Generation Risk Assessment				
263	611	Saskia Aan	hDMT INFRA: a unique infrastructure bringing human organ and disease models closer to application.				
			SESSION: 3.5 Standards for MPS validations				
264	73	Shoka Takebayashi	Avoiding problems and optimizing conditions for seeding human hepatocytes into MPS using PXB-Shizuku® medium				
265 266	77 630	Takahiro Yoshioka Morteza Roodgar	Enhancement of cell viability in hepatocyte culture using the membrane up-and-down perfusion MPS chip: Fluid3D-X [®] Closing the Translational Gap: Nonhuman Primate MPS as a Complementary Platform to Human MPS.				
267	655	Eric Safai	The Translational Organ-on-Chip Platform (TOP) Starter Kit: An ISO-compliant, Reconfigurable Design for Plug-and-play Testing				
268	635	Soumya Mitra	Development of On-chip Functional Blood and Lymphatic Microvasculature				
			TRACK 5: Incubator ideas				
	1		SESSION: 5.1 Incubator ideas: MPS of different organs or diseases				
269	53	Thayná Avelino	Advancing In Vitro Skin Models: A 3-Layered Bioprinted Human Skin Equivalent with Hypodermis				
270	166	Cintia D. S. Horinouchi	3D bioprinting of mesenchymal stem cells containing hydrogels for tissue modeling				
271	181	Raghda Shahin	Convert suspension-type human primary hepatocytes to pleatable-type human primary hepatocytes as a novel in vitro pharmacokinetic model to be used in microphysiological systems for induction and efflux transporter assay at an affordable price.				
272	481	Sangeeta Khare	A novel ex vivo system for microbiome-xenobiotics interaction as the first step of the decision tree for the gastrointestinal toxicity assessment				
			Multi-organ-on-chip device for modeling opioid reinforcement and withdrawal, and the negative affective component of pain:				
273	497	Zhan Shu	a therapeutic screening tool				
274	616	Jungkyu (Jay) Kim	High-fidelity Microphysiological Systems for Investigating Corneal Dysfunction and Glaucoma				
275		Kaatuut Mada adila	Adoption of Microphysiological Systems for preclinical research in India is contingent upon their economics, among other				
2/5		Kasturi Mahadik Kasina Orlawaka	challenges				
2/6	664		Nieurefluidie Device Sussessfully Devleges Traditional Madels of Programmy Associated Device Device Sussessfully Devleges Traditional Medels of Programmy Associated Device Device Device Traditional Medels of Programmy Associated Device Devi				
/8	614	Ana Collins-Smith	Microfiulaic Device Successfully Replaces Traditional Models of Pregnancy Associated Drug Pharmacokinetic Studies				